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We have derived earlier the rather lengthy formalism for time simulations in poly(p-phenyl-
ene), treating the rings as semirigid rotors. To this end the Euler–Lagrange formalism had to
be used. As a first step we intended to parametrize the simplified Hückel-type hamiltonian
on the basis of density functional theory (DFT) calculations on some dimeric model systems.
The results of this attempt are reported here. However, calculations on much longer chains,
containing up to 200 rings, show a clear tendency of our model to favor the quinoid B-
phase structure over the aromatic one. Further, in doubly charged chains, the charge tends
to remain unseparated and to be completely delocalized over virtually the complete part of
the chain, that is in B-phase conformation. The bipolaron width turns out to be extremely
small, of about 10 rings in a chain having 200 rings. This is rather unexpected and inter-
preted as a shortcoming of the Hückel-type nature of the hamiltonian. The reason is that in
the Hückel-type model the two electrons, taken away to charge the chain, are from the same
orbital, and thus charge separation is more difficult, leading, in this case, only to a
delocalization, keeping the bipolaron small. We assume, that in line with Prof. Paldus’ work,
the inclusion of direct electron–electron interactions in the form of a Pariser–Parr–Pople
(PPP) type model could overcome this difficulty. The treatment has to be done, probably, in
an open shell form to make possible spin separation, if necessary. Care has to be taken for
spin contaminations in such treatments and possibly even the explicit inclusion of electron
correlation might be necessary. In this paper we report our model which was derived in de-
tail in a previous paper. Then we discuss the parametrization attempts and our results on
longer chains. In conclusion our suggestion is that a PPP type model must be used at least
to allow for bipolaron calculations and confinement of the two like charges. Such calcula-
tions would be the content of a forthcoming paper.
Keywords: Poly(p-phenylene); DFT calculations; Parametrization of a Hückel-type model;
Static model calculations; Ab initio calculations; Pariser–Parr–Pople model.
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I. INTRODUCTION

Conjugated organic polymers like trans-polyacetylene (tPA) or poly(p-phe-
nylene) (PP), usually exhibit spinless charge transport at low doping levels.
In tPA this phenomenon was explained initially and successfully by Su,
Schrieffer and Heeger (SSH) with the help of solitons1–4. tPA shows a
dimerized structure in the ground state, i.e. longer “single bonds” and
shorter “double bonds” alternate. Obviously this leads to the existence of
two energetically degenerate ground states with different bond alternation
phases (termed A and B). If in a given chain we have a defect where this
phase passes from A to B we have a soliton. Such a soliton can be electri-
cally charged (spinless) or neutral (see1–3, a detailed review paper, authored
by KSSH, K denoting Kivelson, is cited as4). The charged solitons are then
the charge carriers in the observed charge transport without the transport
of spins in tPA at low doping levels or in the photoconducting state. Al-
ready in their first simulations of the dynamics of tPA with the help of the
Su–Schrieffer–Heeger model1–3, Su and Schrieffer5 have found that, upon
doping of soliton-free tPA chains with one electron or hole, no solitons but
charged polarons are formed. These polarons are defects, which can be
viewed as a bound state of a soliton (phase change from A to B) and an
anti-soliton (phase change from B to A), where one of them is charged.
However, one could show that bipolarons, i.e. doubly charged polarons, are
instable in tPA because of the degenerate ground state and they decay rap-
idly into a pair of free charged solitons4–6. But, as discussed below, in poly-
mers like poly(p-phenylene), bipolarons (doubly charged and spinless) can
be stable, while solitons are not. We want to point out that the findings of
SSH at most were obtained with a simple Hückel-type hamiltonian which
in contrast to the Hückel model incorporates variations of the resonance
integrals with bond lengths.

Further it has been shown that the SSH model, which is basically of a
Hückel type without any explicit electron–electron (e–e) interaction in-
cluded, is not sufficient to describe tPA. We do not intend to list here all
the arguments for the importance of e–e interactions in conducting poly-
mers, but refer the reader to the detailed discussion given by Baeriswyl7. We
have studied the dynamics of polarons and bipolarons in tPA, including e–e
interactions on the Pariser–Parr–Pople8–12 (PPP) level13,14. We have found
that e–e interactions considerably reduce the extension of solitons in tPA
chains (present there at very low doping levels). Bipolarons are unstable on
the PPP level and decay into free, charged solitons within a very short time,
leaving a breather vibration behind them. Similar results were obtained by
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Boudreaux et al.15 with the help of the semiempirical all-valence electron
MNDO (modified neglect of differential overlap) method, which includes,
in contrast to the PPP model, not only the π electrons, but all the valence
electrons. Our studies on PP will be based on our experience gained in the
work on tPA and cPA (cis-PA). However, due to the success of the Hückel-
type SSH model in simple polyacetylene chains we want to report in this
paper the shortcomings of Hückel-type models when applied to more com-
plicated systems like PP. As detailed in Conclusion, we suggest that the
shortcomings are really due to the lack of explicit electron–electron interac-
tions and advocate, like Prof. Paldus did many times, the use of at least a
PPP approach for such systems.

On the basis of theoretical considerations it has been concluded that the
coupling between different chains (although weak) should destabilize
polarons16,17. Also the results of three-dimensional density functional band
structure calculations seem to point to this direction18. More recent work,
however, indicated that short chain lengths as well as impurities are able to
stabilize polarons19. Also, investigations using the SSH model have shown
that polarons can be stable within a broad range of the coupling strength
between different chains20. Further, polarons were observed experimen-
tally21,22. With the help of the valence effective hamiltonian (VEH) method
it was possible to calculate the number and the energetical positions of the
electronic excitations due to a polaron, in agreement with experimental
data23. The influence of quantum lattice fluctuations on the dimerization
and on solitons in tPA was investigated using different methods24–28. The
mobility of solitons and polarons in the presence of the effects of scattering
on acoustic lattice phonons was investigated by Sum et al.29, where a sur-
prisingly large difference in mobility between charged and neutral quasi-
particles was found.

In cis-PA (cPA) as well as in most of the other conducting organic poly-
mers like PP, two states also exist with different bond alternation phases.
However, in contrast to tPA, in these systems the two states are not energet-
ically degenerate. This implies that solitons cannot be stable in this type of
material3 because they represent a change from A to B form at the soliton
center and therefore would be associated with a large chain segment of
high energy B phase. Thus they would simply move to the chain end and
remain there forever, or they would deform the chain around them to a
polaron (singly charged, not spinless), which contains limited amount of
B phase only. Separating pairs of charged solitons would develop a chain
segment of increasing length between their centers which would show the
energetically unfavourable B phase. Therefore polarons could exist in these
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systems, and also bipolarons, because the electrostatic repulsion between
the two charges of a bipolaron could be compensated via the small B-
segment in a bipolaron in contrast to the very long one which would be
necessary for complete separation of the charges. The stability and dynam-
ics of such polarons have been investigated theoretically, although mostly
on the SSH level20,30. The static properties of such quasiparticles have also
been studied using all-valence electron methods31–34. Investigations of the
influence of e–e interactions on polarons and bipolarons in cPA have been
studied by us and also by other groups.

However, most of the other synthetic metals do not have a degenerate
ground state, just like cPa, and therefore support polarons and bipolarons
as charge carriers. An important polymer of this type is poly(p-phenylene).
PP and other polymers of this type are blue-light-emitting, and therefore
are potential candidates for light emitting diodes. Our main interest are
time simulations on the charge carriers in this material. To that end, we
have to reparametrize the SSH-type hamiltonian on the basis of ab initio
calculations on some dimers of the monomer of PP (biphenyl), after having
derived the formalism needed for the model in Section II. The formalism
for the time simulation, based on the Euler–Lagrange approach was derived
and outlined in previous papers35,36. Since, due to the shortcomings of the
single-particle model, we actually do not report any simulations in this pa-
per, we will only discuss the model geometry, the σ electron potential and
the π-electron energy in Section II.

In a forthcoming paper which is presently under investigation we hope
that we can report on the parametrization of a PPP hamiltonian as well as
on bipolaron optimizations and time simulations. Further we plan to study
electronic spectra of the doped polymer.

II. METHOD

As mentioned earlier, in this Section we want to outline first of all our geo-
metrical model and the collective coordinates, governing the movements.
This model is based on optimized structures of biphenyl and terphenyl, us-
ing the density functional theory (DFT) method. In Subsection 2 we want
to present our Hückel-type model for the π-electrons. Finally, in Subsection 3
the potentials which could model the σ-electrons are outlined. Since in
Section III we want to report some results, pointing to the shortcomings of
such a model, there is no need to detail here the time simulation method,
which was already published36.
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II.1. Geometry

As reported in our previous papers35,36, we initially wanted to build a com-
plete chain from repetition of the central unit of terphenyl, rotated (J – 1)
times by the equilibrium rotation angle (ϕo

A = 38.4° in biphenyl, ϕo
A = 37.9°

in terphenyl) for the ring number J, the first ring and the reference geome-
try being in the xy-plane as indicated in Fig. 1. This rotation pattern could
be simulated by a linear extrapolation between the angles for the aromatic
and the quinoid form, according to the aromatization coordinate qJ of ring
J and that of its (J – 1)-th neighbor.

The atomic coordinates, R′Ji, of a ring in the same position as the refer-
ence ring, being in an aromatic geometry (Ri) can be generated by (follow-
ing36)

′ = + −R RJi i J iq
1
2

1( ) .Å � (1)

Note, that the terminal rings, besides being in the xy-plane, do not neces-
sarily need to have the reference geometry. The shift vectors together with
the reference ones and the necessary parameters are given in Table I. The
translation t has to be performed (J – 1) times along x to shift the ring into
position J.

While in36 we suggested to use the geometry of the central unit in
terphenyl as reference for all the units of a chain, the DFT potential sur-
faces for dimeric structures, published in35, suggest that the geometrical
model should be more close to reality. So we decided to use for the dimer
directly the biphenyl geometry, while chains with a larger than or equal to
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FIG. 1
Sketch of the structural parameters in the central unit of terphenyl and the B-phase trimer

(–u′,0) (u′,0)

(u,v) (–u,v)

(–u,–v)(u,–v)

X

Y

v

u
α

R1 R2

R3

R4R5



Collect. Czech. Chem. Commun. (Vol. 70) (2005)

694 Förner:

TABLE I
The reference geometries Rj, where j denotes the ring involved (atom #6 is always shifted to
the origin) and the shift vectors �j, connecting the aromatic form to the quinoid one in the
dimers and the trimers of poly(p-phenylene) (calculated by the DFT/B3LYP method). Note
that all the rings are planar and thus all z-coordinates are equal to zero. Only by rotations of
individual rings by Φ around x do they come into play. The angles given are for the purely
aromatic forms and t is the length of the translation vector along x leading from one ring to
the next one on its right hand side. j here is 1 or N (2 for the dimer) for the two terminal
units and i for all rings inside the chain

Dimer (Φ = 38.3850°)

Left terminal
unit

R1, Å �1

Atom x y x y

1 0.703665 1.205427 u v
2 2.097527 1.205099 –u′ v′
3 2.820094 0.0 w 0
4 2.097527 –1.205099 –u′ –v′
5 0.703665 –1.205427 u –v
6 0.0 0.0 –w 0

u = 0.0274700 Å, v = 0.0220242 Å, u′ = 0.0101100 Å, v′ = 0.0179049 Å, w = 0.0457660 Å,
t = 4.3059640 Å

Right terminal
unit

R2, Å �2

Atom x y x y

1 0.722567 1.205099 u′ v′
2 2.116429 1.205427 –u v
3 2.820094 0.0 w 0
4 2.116429 –1.205427 –u –v
5 0.722567 –1.205099 u′ –v′
6 0.0 0.0 –w 0
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TABLE I
(Continued)

Trimer (Φ = 37.9143°)

Left terminal
unit

R1, Å �1

Atom x y x y

1 0.703677 1.205464 u1 v1
2 2.097436 1.205283 –u1′ v1′
3 2.820166 0.0 w1 0
4 2.097436 –1.205283 –u1′ –v1′
5 0.703677 –1.205464 u1 –v1
6 0.0 0.0 –w1 0

u1 = 0.0281975 Å, v1 = 0.0199442 Å, u1′ = 5.368500 × 10–3 Å, v1′ = 0.0137843 Å,
w1 = 0.0425795 Å, t = 4.3045150 Å

Central unit Ri, Å �i

Atom x y x y

1 0.728267 1.201195 u v
2 2.119443 1.201195 –u v
3 2.847710 0.0 w 0
4 2.119443 –1.201195 –u –v
5 0.728267 –1.201195 u –v
6 0.0 0.0 –w 0

u = 0.0121170 Å, v = 6.878000 × 10–3 Å, w = 0.0350050 Å

Right terminal
unit

RN, Å �N

Atom x y x y

1 0.722730 1.205283 u1′ v1′
2 2.116489 1.205464 –u1 v1
3 2.820176 0.0 w1 0
4 2.116489 –1.205464 –u1 –v1
5 0.722730 –1.205283 u1′ –v1′
6 0.0 0.0 –w1 0



N = 3 number of rings, have the terminal units of terphenyl at their ends
and all rings aside from the terminal ones have the central unit of
terphenyl (see Table I). The shifts are now taken directly from the atomic
coordinates and not as previously suggested from the changes in bond
lengths between A and B phases.

Then the aromatization coordinates of the J-th and the (J – 1)-th ring
would determine the relative rotation angle between the two rings. In a
first approximation one could assume that the mean value of the two q-s is
mainly responsible for the actual value of the relative angle:

ϕ φJ J Jq q= + +−
1
2

1
2

11( ( ) / ) .Å o
A (2)

Thus to obtain the positions RJi in ring J, the above, shifted geometry
would have to be rotated around the x-axis by (note that ϕ1 = 0)

ΦJ I
I

J

=
=
∑ϕ

2

(3)

and then shifted (J – 1) times by the translation length t:

R D R eJi x J i J i xq J t= + − + −( )[ ( ) ] ( )Φ 1
2

1 1Å �

ΦJ
I

J

I IJ Iq J= − − + −
=
∑1

2
1

1
2

1
2

1
21

1( ) / ( ) .δ δ φ
φ

o
A o

A

Å (4)

ex is the unit vector in x direction and the relevant values for t are given in
Table I. The rotation matrix Dx(α) is

Dx ( ) cos sin

sin cos

.α α α
α α

=
−

















1 0 0

0

0

(5)

However, note that in our finalized formalism, we allow the rotation an-
gles at the rings to vary freely. Only the angle at ring #1 is always fixed to
zero. Also any additional CH2 groups for the saturation of dangling bonds
in the quinoid forms are always attached in a coplanar structure to rings 1
and N. Their coordinates are:
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R x r qN x6 1 6
0

0

1
2

1+ = − ′ + − ′













A ABÅ( ) � e

R x r q N tN N x6 2 3
0

1

1
2

1 1+ += + ′ + − ′





+ −







A ABÅ( ) ( )� e , (6)

where the x0
i are the x coordinates of the carbons #3 and #6 in the refer-

ence geometry, r′A = 1.485870 Å, r′B = 1.405162 Å in the dimer, r′A =
1.484349 Å, r′B = 1.406069 Å in all longer chains (numbers from the
trimer), and ∆′AB = r′B – r′A. The values of t can be found in Table I, the q-
values for these carbons are varied freely and their rotation angles are the
same as those of the neighboring rings (1 and N, respectively). A ring in its
unshifted and unrotated (around x) position is sketched in Fig. 1, which
gives also the atom numbering in a ring.

II.2. The Hückel-type Model for the π-Electrons

II.2.1. The Model

For the calculation of the π-electron energy we use a semiempirical Hückel-
type method in a similar manner as SSH did for tPA. We do not need to de-
scribe the method here in an open shell form, because for a Hückel-type
picture the orbitals for α- and β-spin are the same, as well as their eigen-
values, only their occupation numbers differ in the case of open shells. The
basic eigenvalue problem that has to be solved is

Hc ci i i= ε . (7)

The overlap matrix, usually appearing in ab initio problems reduces here to
the unit matrix, because of the zero differential overlap approximation
(ZDO) applied in Hückel type models. The c-s denote the column eigen-
vectors of the Hückel matrix H, and the ε-s the energy eigenvalues. In
Hückel type theories a p orbital is assumed at every carbon atom and the
one electron wavefunctions are linear combinations of these atomic
orbitals (AO), formed with the eigenvector coefficients. Let Ir denote the
ionization potential for each site (all Ir are the same if all sites are carbons),
then for carbon Ir = IC = 11.54 eV (lit.5,12).

The Hückel matrix is given by
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H Irs r rs rs rs= − − −δ β δ( ) .1 (8)

Note that in all cases of B-phase chains with saturating CH2 groups at the
terminal rings, the indices M + 1 and M + 2 (M = 6N) of the two additional
carbons bound to carbon 6 in ring 1 and to carbon 3 in ring N have to be
included. The one-electron integrals βrs = β(I–1)6+i;(J–1)6+j are defined only be-
tween bonded carbon atoms via the change in the respective bond length
∆Rrs:

β β β α
ij
IJ

rs rs
Rf rs= = −

oe o ∆

∆R R R R Rrs rs o ij
IJ

o= − = −= =

f frs I i J j= =− + − +( ) ; ( )1 6 1 6

= − + + − + ++δ δ δ δ δ δ δ δ δ, −IJ j i i i j j i i i j[ ( ) ( ) ],1 1 1 6 1 6 6 11 1

+ − − ++ +δ δ δ δJ I IN i j I I, ( )[ cos ( )]1 3 6
2

11 Φ Φ

+ − −− −δ δ δ δJ I I i j I I, ( )[ cos ( )] .1 1 6 3
2

11 Φ Φ (9)

Thus in terms of the explicit indices we have

β β βα α
rs rs

R
rs

R Rf frs rs o= = =− − − =

o oe eo o∆ ( )

=
− − =

f rs

R Rij
IJ

oβ
α

oe o ( )
. (10)

For trans-polyacetylene βo = 2.5 eV and αo = 1.896 Å–1 (taking into account
the projected geometry used by SSH1) and for the length of a C–C bond in
an equidistant, i.e. metallic chain, Ro

= = 1.40 Å can be chosen5,37,38. These
numbers probably would have to be fixed newly for poly(p-phenylene)
because the one-electron integrals are based on the projection of bond
lengths on the chain axes of tPA while ours, in contrast to the SSH model,
are based on actual C–C bond lengths. Rrs is the distance between carbon
atoms r and s, written as Rij

IJ for carbons i in ring I and j in ring J, thus r =
(I – 1)6 + i and s = (J – 1)6 + j (the additional carbon at ring #1 for B phase
has an index 6N + 1, the additional carbon at ring #N for B phase has an in-
dex 6N + 2).
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P is the charge density bond order matrix, built from the orbital eigen-
vector coefficients and the occupation numbers of the orbitals:

P o o c crs i i ir is
i

M

= +
=

′

∑ ( )α β

1

(11)

oi
σ is the occupation number of orbital i for spin σ (0 or 1).
The total π-electron energy is then

E H P o ors rs
r s

M

i i i
i

M

π
α β ε= = +

=

′

=

′

∑ ∑
,

( )
1 1

(12)

where M′ is equal to 6N in a chain containing only N rings, but equal to
6N + 2 in a chain containing two CH2 groups.

The gradients for a fully variationally solved Hückel problem can be ob-
tained by differentiating all the integrals in the Hückel-matrix elements,
but not the P-matrix elements, although they depend via the eigenvector
coefficients implicitely on geometry: it was shown that the occurring sums
of their derivatives sum up to exactly zero38,39 due to the ZDO approxima-
tion, while in case of an overlap matrix other than l, they yield sums of de-
rivatives of overlap matrix elements. Thus the π-electron energy in some
more detail is:

E M I Pc rs rs rs
rs

π β δ= − ′ − −∑ ( ) .1 (13)

Since the one-electron integrals are defined between each pair of carbons, it
is now only necessary to detail the sum over the one-electron integrals a bit
further (for P-matrix elements the carbon numbers within a ring are taken
as indices, the ring numbers are written in bracketts). Note that Pij(I,J) =
Pji(J,I) applies

− − =∑β δrs rs rs
rs

P ( )1

= − + + +−
=

−∑β β β βi i
II

i
i i

II IIP I I P I I, , ( , ) ( ) ( , )1
2

6

1 16 61 16 i i
II

i
i i

I

N

P I I, , ( , )+
=

+
=

∑∑ 







 −1

1

5

1
1

− + − −+

=

−
−

=
∑β β36

1
36

1

1

63
1

63
2

1 1I I

I

N
I I

I

N

P I I P I I, ,( , ) ( , ) .∑ (14)
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To obtain derivatives of the energy with respect to the q-s we have already
mentioned that in all these terms only the integrals need to be differenti-
ated, not the P-matrix elements. Differentiation of the one-electron inte-
grals yields

∂β

∂
α

∂

∂
δ

∂αij
IJ

L
ij
IJ R R ij

IJ

I
IL

ij

q
f

R

q

R
ij
IJ

o= − +
− − =

o e o ( )
IJ

J
JLq∂

δ










 =

= − +










α β

∂

∂
δ

∂

∂
δo ij

IJ ij
IJ

I
IL

ij
IJ

J
JL

R

q

R

q
. (15)

Thus the derivatives of the π-electron energy can be written as

∂
∂

∂β
∂

δπE
q q

P
J

rs

Jrs
rs rs= − −∑ ( ) .1 (16)

Therefore we have

− − =∑ ∂β
∂

δσrs

Lrs
rs rsq

P ( )1

=






+− −
−

==
∑∑α β

∂

∂
σ

o i i
II

i i
i i
II

IiI

N

P I I
R

q, ,
,( , )1 1

1

2

6

1

+ + +β
∂
∂

β
∂
∂

σ σ
16 16

16
61 61

61II
II

I

II
II

I

P I I
R

q
P I I

R

q
( , ) ( , )

+






++ +
+

=
∑β

∂

∂
δσ

i i
II

i i
i i
II

Ii
ILP I I

R

q, ,
,( , )1 1

1

1

5

+ + ++

=

− +

∑α β
∂

∂
δ

∂σ
o 36

1
36

1

1
36

1
361I I

I

N I I

I
IL

I

P I I
R

q

R,
,

( , )
,

,

I

I
I Lq

+

+
+









 +

1

1
1∂

δ

+ − +−

=

−

∑α β
∂

∂
δ

∂σ
o 63

1
63

2

63
1

631I I

I

N I I

I
IL

I I

P I I
R

q

R,
, ,

( , )
−

−
−











1

1
1∂

δ
qI

I L, (17)
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which finally, after performing the sum over I, gives

− − =∑ ∂β
∂

δrs

Jrs
rs rsq

P ( )1

α β
∂

∂o i i
JJ

i i
i i
JJ

Ji

P J J
R

q, ,
,( , )− −

−

=
∑







+1 1
1

2

6

+ + +β
∂
∂

β
∂
∂16 16

16
61 61

61JJ
JJ

J

JJ
JJ

J

P J J
R

q
P J J

R

q
( , ) ( , )

+






++ +
+

=
∑β

∂

∂i i
JJ

i i
i i
JJ

Ji

P J J
R

q, ,
,( , )1 1

1

1

5

+ + + ++
+

+α β
∂

∂
βo 36

1
36

36
1

63
1

631 1J J
J J

J

J JP J J
R

q
P J,

,
,( , ) ( , J

R

q

J J

J
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As last step for the calculation of derivatives we have to turn to the Φ-s
now. We have to look only at the terms which contain the bridge one-
electron integrals. Because we have to note that a ring rotation does not
change the intraring bond lengths, and thus the derivatives of intraring β-s
with respect to any ring rotation angle ΦJ simply vanish. The other β-s be-
tween rings are only those for the bridge bonds. Again the rotation of rings
does not change the lengths of these bonds; however, β depends on Φ via
the cos2 factor which takes into account the rotation relative to each other
of the two p orbitals, forming the bridge π-bond. Thus

∂β

∂Φ
β

αij
IJ

L

R

I I I I
ij
I I

= − − −
−

+ +

+

oe
∆

Φ Φ Φ Φ
,

cos ( ) sin( )
1

2 1 1 ( ) .,δ δI L IL+ −1 (19)

Then the complete term in Eπ becomes
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and finally
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II.2.2. Parameters

Since the potential surfaces given in36 were based on another geometry
than the one we use here, we had to recalculate a few A and B-phase dimers,
using the Gaussian98 40 program to perform DFT/B3LYP calculations (den-
sity functional theory/Becke-3 exchange, Lee–Yang–Parr correlation poten-
tial) with a valence split atomic basis set augmented with d functions on
heavy atoms and p functions on hydrogens. We calculated energy differ-
ences between the A-phase minimum [EA(q = +1 Å)] and two other A-phase
geometries (q = 0, Φ = 90° and Φ/2) and between the B phase minimum
[EB(q = –1 Å)] and two other B phase geometries (q = 0, Φ = 0° and Φ/2).
Then we did a least-square fit to determine optimum parameters, using
the σ-electron potential model A (same harmonic oscillator for all C–C
σ-bonds) and model C (two sets of harmonic oscillators for intra- and inter-
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ring C–C σ-bonds) as described below. To this end we calculated these en-
ergy differences with 50 different values of βo, between 0.0001 and 25 eV,
and at each of the β values we used 50 values of αo between 0.0001 and
25 Å–1 and determined the parameter values, where the smallest root-
mean-square deviation (rms) between the DFT and the Hückel energy dif-
ferences occurred. Then the procedure was repeated around the minimum
with a step length of 0.1 eV and 0.1 Å–1, respectively. Finally we repeated
that again around the new minimum, now with a step length of 0.01 eV
and 0.01 Å–1, respectively. For model A we obtained in this way a minimal
rms of 0.30 kcal/mol at βo = 2.12 eV and αo = 3.41 Å–1, while for model C
we obtained a minimal rms of 0.26 kcal/mol at βo = 2.44 eV and αo =
2.91 Å–1. The individual energies are listed in Table II.
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TABLE II
Total DFT energies (in Hartrees, H) for the six dimers used in the parametrization, together
with the energy differences (detailed in footnotea) as calculated for the DFT values (both in
H and kcal/mol) and by the Hückel method at the respective minimum rms values, calcu-
lated with σ-potential model A, as well as with σ-potential model C

DFT energies of the dimers

Dimer E/H

A (q = +1 Å, Φ = Φo) –463.321939393
A (q = 0, Φ = Φo/2) –463.314092674
A (q = 0, Φ = 90°) –463.310128113
B (q = –1 Å, Φ = 0) –540.667976863
B (q = 0, Φ = Φo/2) –540.653990266
B (q = 0, Φ = 0) –540.657053953

Energy differences

ia ∆Ei(DFT)/H ∆Ei(DFT)/kcal/mol ∆Ei(A)/kcal/mol ∆Ei(C)/kcal/mol

1 –7.846719 × 10–3 –4.92 –4.65 –4.47
2 –0.01398660 –8.78 –8.72 –8.99
3 –0.01181128 –7.41 –7.87 –7.51
4 –0.01092291 –6.85 –6.58 –6.75

a ∆E1 = A (q = +1 Å, Φ = Φo) – A (q = 0, Φ = Φo/2); ∆E2 = B (q = –1 Å, Φ = 0) – B (q = 0, Φ = Φo/2);
∆E3 = A (q = +1 Å, Φ = Φo) – A (q = 0, Φ = 90º); ∆E4 = B (q = –1 Å, Φ = 0) – B (q = 0, Φ = 0);
(DFT) denotes DFT values, (A) are at minimum rms for potential model A, (C) are at mini-
mum rms for potential model C.



The Table shows that the agreement between the DFT values and those
calculated with the two potentials is in both cases rather satisfactory. Let us
turn now to the different potential models tested in this work.

II.3. The σ-Electron Potentials

The total potential energy consists of three parts, where the analytical
potential terms in Vσ are assumed to describe contributions due to the σ
electrons (Vσ

σ) and due to the repulsion between the hydrogen atoms near
to the bridge bonds between the rings (Vσ

Φ). The third part consists of the
π-electron energy (Eπ), which, as discussed above, in our preliminary model
is calculated with the Hückel hamiltonian:

V V V E V E= + + = +σ
σ

σ π σ π
Φ . (22)

The following subsections describe the σ-terms as well as their derivatives
with respect to the degrees of freedom. Further we show how the parame-
ters entering the terms can be determined. As it will be described in detail,
we had to try out several different Ansätze for the σ-electron potential model,
due to difficulties in getting the right minima and the parameters converg-
ing with the number of rings in a chain, N. We suggest that this shortcom-
ing might be due to our use of a Hückel-type model for the π-electrons.

To make the suspected form of the carriers in poly(p-phenylene) plausi-
ble, we show idealized sketches of poly(p-phenylene) chains. Those are ide-
alized, because in the real material changes between the aromatic (A) and
the quinoid (B) phases should be gradual, while in the sketches they are lo-
calized basically in one carbon atom each. Figure 2 shows a neutral polaron
structure in a chain (triplet in this example), which has two unpaired elec-
trons at its two ends. They would not be stable because the B-phase seg-
ment between the isolated electrons has a higher energy than the A phase.
Thus such a neutral structure would simply relax to the aromatic phase
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n m l

FIG. 2
Sketch of a neutral polaron structure (triplet) in a poly(p-phenylene) chain (note that the
changes from A to B phase and from B to A phase at the ends of the polaron are idealized to a
zero width)



throughout. In Fig. 3 one of the unpaired electrons is removed, to give a
polaron, which is singly charged, in the example positive, and carries an
unpaired spin, both delocalized over the B-phase segment (which is there-

fore not fully developed). Since the charge transport in doped poly(p-phe-
nylene) involves no spin transport, in the actual charge carriers the second
unpaired electron is also removed to form a positively charged bipolaron as
shown in Fig. 4.

The length of the B-segment in a bipolaron would be determined by the
balance of two forces. The repulsion between the two like charges favors a
long B-phase segment, while the higher energy of the B phase favors a short
one. The positive charge occurs in cases of p-type doping and would be
negative if n-type doping is investigated.

II.3.1. The σ-Electron Potential Model A

The simplest, most obvious choice of a potential to describe the σ-electron
energies requires two parts, one dealing with the lengths of σ bonds (Vσ

σ)
and another one describing the repulsion between the hydrogen atoms
near to the bridging bonds, which also originates mostly from the σ elec-
trons of CH single bonds; however, their distance depends on the relative
rotation angles between two neighboring rings (Vσ

Φ):

V V Vσ σ
σ

σ= + Φ . (23)
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n m l

FIG. 4
Sketch of a positively charged, spinless bipolaron structure in a poly(p-phenylene) chain (note
that the changes from A to B phase and from B to A phase at the ends of the bipolaron are ide-
alized to a zero width)

n m l

FIG. 3
Sketch of a positively charged polaron structure with an unpaired spin in a poly(p-phenylene)
chain (note that the changes from A to B phase and from B to A phase at the ends of the
polaron are idealized to a zero width)



Thus Vσ
σ is written in terms of the bond distances in and between the rings,

and in model A we assume one and the same harmonic oscillator for the
description of all C–C σ-bonds:

V K R R R R R Ri i
J J

o
J J

o
J J

σ
σ

σ= − + − + −+
+1

2 1
2

6 1
2

3 6
1( ) ( ) (,

,
,
,

,
,

o J N
iJ

N

) ( ) .,
2

1

5

1

1 −





==

∑∑ δ (24)

Here Ri j
I J
,
, denotes the distance between carbon atom i in ring I and carbon

atom j in ring J. Kσ is the force constant for C–C σ-bonds, while Ro is the
equilibrium distance for C–C σ-bonds. These are the two parameters which
have to be determined to fix the total energy minima at phases A and B. In
case of terminal B-phase rings one has to add 2 terms for the additional
CH2 groups instead of hydrogen in the case of aromatic terminal rings:

V K x q x R x x qN N o
N

N Nσ
σ

σ+ − − + −+ + + +
1
2 6 1 1 6

1 2 2
3 6 2 2( ( ( ) ) ) ( ( ( )[ ]) )2 2− Ro (25)

where the first term contains the deviation of the bond length between the
additional carbon 6N + 1 and carbon 6 in the first ring and the equilibrium
σ-bond length, while the second term contains the same for carbon 3 in the
last ring N and the additional carbon 6N + 2.

For the second part of the potential we suggested in36 to use cos2 terms in
the relative rotation angles between neighboring rings, which oscillate be-
tween 0 at the largest distance between the hydrogens and 1 at the smallest
distance between the hydrogens of two neighboring rings. Thus we expect
that Φo turns out to approximately vanish, because cos2 has already the cor-
rect symmetry dependence on the Φ-s. The potential becomes

V V J J
J

N

σ
Φ

Φ Φ Φ Φ= − −+
=

−

∑ cos ( ) .2
1

1

1

o (26)

To fix the constants, for a given chain length of N rings, two systems
have to be calculated, using our model:

1. The aromatic A phase, with 6N carbon atoms, which should be a mini-
mum of the total energy for qJ = +1 Å and ΦJ = (J – 1)Φo

A; and
2. The quinoid B phase, with 6N + 2 carbon atoms, which should be an-

other minimum of the total energy for qJ = –1 Å and ΦJ = 0°.
Thus for uniform qJ = q we have (Et denotes total energy)
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while for ΦJ = (J – 1)Φ we have

∂
∂

∂
∂Φ

∂Φ

∂Φ
∂
∂Φ

E E
J

E

JJ

N
J

JJ

t t t

Φ
= = −

=
∑ ∑

1

1( ) . (28)

Thus for the chain in A phase the conditions

∂
∂

∂
∂

E
q

E
q q

t
A

Å; =
t
A

Å; =o
A

o
A| |

= =
= =

1 1
0

Φ Φ Φ ΦΦ
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have to be fulfilled. For the B-phase calculation one has to add the two ter-
minal CH2 groups M + 1 and M + 2 (M = 6N) and the conditions

∂
∂

∂
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E
q

E
q q

t
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Å; =0
t
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Å; =0
| |

= ° = °
= =

1 1
0

Φ ΦΦ
(30)

must be fulfilled. The corresponding π-electron energies will be denoted as
Eπ

A and Eπ
B.

Since Vσ
σ depends only on bond length changes which do not depend on

ring rotations, its derivatives with respect to ΦJ vanish and since Vσ
Φ de-

pends only on ΦJ, its derivatives with respect to qJ vanish. Thus the above
four conditions will yield two decoupled systems of two equations each,
one in Kσ and Ro and the other one in VΦ and Φo (in the case of the cos2

form) only.
Unfortunately, it turned out that with the cos2 potential term it is impos-

sible to ensure minima in A and B for all chain lengths. The potential
should represent non-bonded interactions between the hydrogen atoms
at the bridge carbons. Thus we turned to consider a potential of a London
type instead:

[ ]V V J

n

J

N

σ α φΦ
Φ ∆= +

−

=

−

∑ 1 2

1

1

sin ( )

∆φ φ φ αJ J J
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R
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°

1

90

1; .HH
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B

(31)
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From a point charge geometry it would follow that α should be equal to
0.58033. However, it turned out that to ensure minima in A and B and
n = 6 (London-type force), α = 0.3 has to be chosen. Then minima can be
ensured in the right angles for the respective A and B form for all chain
lengths considered. This we could ensure, using the π-electron energy deriv-
atives given by our program. A smaller α value than the theoretical one
makes physical sense because the electrons themselves interact repulsively
already at smaller distances than the point charges.

For the derivatives of the potential we need the derivatives of the bond
distances. For the distance between two atoms i and j in rings I and J we
have

Ri j
I J
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Thus derivatives with respect to the q-s are
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Collect. Czech. Chem. Commun. (Vol. 70) (2005)

708 Förner:



For the determination of Kσ and Ro we need now the derivatives of Vσ
σ

with respect first to qL and then for uniform qL = q
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Thus after the summation over J is performed, we arrive at
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Since the geometry is a uniform one with qJ = q, we have

∂
∂

∂
∂

∂
∂

∂
∂

σ
σ

σ
σ

σ
σV

q

V

q

q

q

V

qL

L

L

N

LL

N

= =
= =

∑ ∑
1 1

. (36)

Furthermore, since Vσ
Φ does not depend on q and thus its derivative with

respect to q vanishes, the derivative of the total energy Et is
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q
E
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t = + (37)

where the calculation of the derivative of the π-electron energy was de-
scribed in the previous subsection.

To get a separation of Ro and Kσ we write down the following two expres-
sions:
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Thus we have to calculate a chain with N rings in the aromatic A-phase
minimum (qJ = +1 Å, ΦJ = (J – 1)Φo

A) to get Eπ
A and, by using this geometry,

to calculate PA and QA. Subsequently we have to calculate a chain with N
rings plus two additional CH2 units at each terminal ring in the quinoid B-
phase minimum (qJ = –1 Å, ΦJ = Φ = 0°) to get Eπ

B and, by using this geome-
try, to calculate PB and QB. In the latter case for each terminal CH2 unit an
additional term has to be added in PB and QB. Then we can set up the mini-
mum conditions

∂
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0 (39)

where superscripts A and B denote that the derivatives have to be taken at
the corresponding minimum geometries. This leads to the system of equa-
tions

K P K R Q
E
qoσ σ
π∂

∂
A A

A

− + = 0

K P K R Q
E
qoσ σ
π∂

∂
B B

B

− + = 0 . (40)
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Since the σ-electron potential is a quadratic form of the qJ-s, one hopes that
these conditions are sufficient to ensure minima at A and B. The first equa-
tion yields

K
E
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= − − −

A
A A[ ] 1 . (41)

Substitution into the second equation gives
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For the determination of VΦ we have to look at the derivatives of Vσ
Φ,

since, as mentioned above, the derivative of Vσ
σ with respect to the Φ-s

vanishes, because it depends only on bond lengths which do not change
due to rotations of the rings. This holds, because only intraring bonds and
the bridge bond along the rotation axis enter. Our numerical calculations
have shown that the derivatives of the π-electron energies with respect to
the Φ-s for all chain lengths up to N = 200 vanish for B phase. Thus, for the
derivative of the total energies to vanish as well, that of the Φ-dependent
part of the σ potential must vanish either in B phase. For a uniform rota-
tion angle Φ between two consecutive rings (or between a CH2 group and
the ring bound to it in B phase) throughout the chain, we have

V V N n
σ
φ

φ α φ= − + −( ) [ sin ] .1 1 2 (45)
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Since in the case of B phase we have for this angle Φ = 0:
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Further, for A phase we have
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and for a minimum in this phase we need at least
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and thus for our potential constant
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where we decided to use n = 6.
We have calculated the potential constants for a few chain lengths be-

tween N = 2 and N = 150. Note that in these calculations with model A we
used βo = 2.20 eV and αo = 3.32 Å–1, which were determined only from
three of the four dimer energy differences calculated with DFT. We checked
whether the extremes are minima or maybe maxima in A and B. When us-
ing two CH2 groups, variable in q and Φ, at the B-phase chains, we found
that for N = 5, 10, 20 and 150, B is indeed a maximum with EB(q = –1 Å + h) –
EB < 0 and EB(q = –1 Å – h) – EB < 0 for h = 1 mÅ. Thus we repeated the cal-
culations with CH2 groups that are fixed, being coplanar to the rings to
which they are bound, q being still variables. In this case A and B phases
where real minima for all chain lengths. Table III lists the potential con-
stants obtained together with the aromatization energies, being
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β β β αα
C C o o o

–1e eV; = 3.32 Åo C C
=

− −= − ==
=( ) ; .R R 2 20

R= = 1.400 Å; RC=C = 1.359400 Å for biphenyl

RC=C = 1.363489 Å for all others (N > 2)

i1 = 6; j1 = 6N + 1; i2 = 6(N – 1) + 3; j2 = 6N + 2

where IC = 11.54 eV is the ionization potential of carbon and N the number
of rings in the chain. Note that we removed as many energy components
originating from the CH2 groups as possible from the B-phase energies since
CH2 groups are not present in A phase.

From the Table it is obvious that neither Ro nor the force constants Kσ
converge properly up to N = 150. Actually Ro increases to 2.17 Å for N =
150, which is far too large to approximate the equilibrium length of a C–C
single bond, which should be around Ro = 1.5 Å. Both the increasing Ro
value as well as the increasing force constant lead to the fact that, although
the π-electron energy is negative in all cases, the total energy becomes posi-
tive for larger chains. Further the aromatization energy increases rapidly
from –2 eV/ring (dimer) to +0.1 meV/ring (N = 150). Thus in the latter case,
the quinoid phase is slightly more stable than the aromatic one.
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TABLE III
The σ potential constants for model A with additional CH2 groups in B phase, together with
the aromatization energies for different numbers of rings N in the chains (Et > 0 for larger N)

N Ro, Å Kσ, eV/Å2 VΦ, eV EA–B, meV/ring

2 1.496 100.61 0.730 –1973.9

3 1.528 91.89 0.814 –1290.9

5 1.621 74.71 0.853 –704.2

10 1.881 57.44 0.876 –217.8

20 2.124 58.02 0.885 –0.6

150 2.169 91.16 0.892 +0.1



To see how this behavior changes when the CH2 groups in B phase are re-
moved, we repeated the calculations without CH2 groups in B, already in
the determination of the potential constants. In this case the aromatization
energy is simply the difference EA – EB divided by the number of rings N.
The results are given in Table IV.

We can see in the Table IV, first of all, that Ro still approaches a too high
value as the chain length increases and thus causes, together with the large
force constants, again positive values of the total energy when N increases
above 40. As before, VΦ converges smoothly to its final value, which is com-
paratively small as expected. However, the aromatization energy is now
also converging with N, but is positive throughout. E′A–B, which is the en-
ergy difference between aromatic and quinoid phase, if only Eπ and Vσ

Φ are
included but not the σ part of the potential. This is indeed negative, but
then, without including Vσ

σ, the minima in q = ±1 Å for A and B are not
fixed. Obviously one has to look for another way to model the σ-electrons.
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TABLE IV
The corresponding values, as in Table III, for model A, but for systems without CH2 groups
in B phase. Note that here EA–B is the simple difference between A- and B-phase energies
(minimum positions all checked; Et(N > 40) > 0; Eπ + Vσ

Φ < 0):

E
N

E EA B A B− = −1 ( ) ; ′ = + − +−E
N

E V E VA B
A ,A B ,B1 [ ( )]π σ

φ
π σ

φ

N Ro, Å Kσ, eV/Å2 VΦ, eV EA–B,
meV/ring

E′A–B, eV/ring

2 1.624 52.70 0.730 +23.3 –0.6679

3 1.632 59.83 0.814 +28.0 –0.4570

5 1.656 67.48 0.853 +32.2 –0.3322

10 1.718 76.00 0.876 +34.9 –0.2206

20 1.810 83.08 0.885 +36.4 –0.1697

40 1.913 89.20 0.889 +37.3 –0.1442

60 1.968 92.43 0.891 +37.7 –0.1358

80 2.003 94.39 0.891 +37.9 –0.1315

100 2.026 95.73 0.892 +38.0 –0.1290

120 2.044 96.71 0.892 +38.1 –0.1273

140 2.057 97.76 0.892 +38.2 –0.1261

150 2.062 97.77 0.892 +38.3 –0.1256



II.3.2. The σ-Electron Potential Model B

Because of the problems encountered so far, we turned our attention to po-
tentials which do not contain explicit bond lengths, but just the qK coordi-
nates of a ring K. We tried a lot of functional forms, including sinusoidal
ones, but the results were always not encouraging. Thus we restrict our-
selves to just one type of such potentials. The Φ-part of the potential was
kept the same also in model B. In model B the potential is of the type

V V qK
K

σ
σ η= −∑ ( )2 (51)

and we decided again to attach no CH2 groups for the saturation of the out-
most left and right rings. Two adjustable constants are again necessary in
order to fix the two minima. The minimum conditions for A- and B-phase
rings yield
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The potential parameters together with the aromatization energies are
given in Table V for several different chain lengths.
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TABLE V
The corresponding values, as in Table III, but here calculated with model B, but for systems
without CH2 groups in B phase. Note that here EA–B is the simple difference between A- and
B-phase energies (minimum positions all checked):

V V qK
K

σ
σ η= −∑( )2

N η, Å V, eV/Å2 VΦ, eV EA–B, eV/ring

2 –1.597 0.10750 0.730 +0.01882
3 –1.358 0.08865 0.814 +0.02456
5 –0.9779 0.08977 0.853 +0.02891

10 –0.6940 0.09087 0.875 +0.03170
20 –0.5540 0.09146 0.885 +0.03301
40 –0.4847 0.09175 0.889 +0.03366

150 –0.4341 0.09197 0.892 +0.03413



The parameter η turns out to be negative throughout. As well as V it con-
verges smoothly with the chain length. However, again the quinoid phase
is increasingly more stable than the aromatic one with increasing N. As we
will see below, this behavior allows for no confinement of two like charges
and thus we do not want to elaborate here more these types of σ-potentials.

II.3.3. The σ-Electron Potential Model C

It came to our attention that the bonds within the system fall into catego-
ries, distinct by symmetry. The interring bonds have another symmetry
than the intraring bonds. Although the intraring bonds also can be
distinguished into two groups, one with four and the other with two
bonds, we decided to ignore this fact because the two minima allow only
two variable parameters. However, we have chosen a similar structure of
the potential with two different spring constants. In this case we decided to
keep Ro = 1.5 Å, a value more appropriate for C–C single bonds, than the
ones calculated so far. Thus the changed part of the σ potential is

V K R R K R Ro oσ
σ

σ σ
σ

σ σ= − + ′ −∑1
2

1
2

2 2( ) ( ) .
intraring interring σ

∑ (53)

Note, that the B-phase molecules have two terminal CH2 units, and thus
two additional interring σ bonds, and Ro = 1.5 Å.

Straightforward differentiation yields
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Summation over L yields for chains with a uniform q at all rings and also
for the terminal CH2 groups in B phase:
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Thus we have the following two equations from the minimum conditions
for A- and B-phase chains:
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The solution is rather simple. Forming (56a) × QB – (56b) × QA yields
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In Table VI we list again the potential constants and aromatization ener-
gies for chains of lengths between 2 and 200. In the Table also the total en-
ergies of the two phases are included. The Φ-potential is the same as in
models A and B. Minima in A and B for q and Φ have been checked in all
cases by explicit calculation of the respective systems, shifted by ±0.001 Å
and ±0.1°, respectively, from equilibrium. Note that from N = 160 the shifts
had to be changed to ±0.0001 Å and ±0.01°, respectively, because the errors
in the numerical gradients became too large. The aromatization energy is
calculated again as

E
N

E E I P Pi j i jA B A B C C C− == − + + + −1
2 2

1 1 2 2
[ ( ( ), ,β

− ′ − −=K R R Voσ φ( ) )]C C
2 2 (59)

β β β αα
C C o o o

–1e eV; = 2.91 Åo C C
=

− −= − ==
=( ) ; .R R 2 44

R= = 1.400 Å; RC=C = 1.359400 Å for biphenyl

RC=C = 1.363489 Å for all others (N > 2); Ro = 1.5 Å

i1 = 6; j1 = 6N + 1; i2 = 6(N – 1) + 3; j2 = 6N + 2
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where as before IC = 11.54 eV is the ionization potential of carbon and N
the number of rings in the chain. In this way again energy contributions in
EB, resulting from the terminal CH2 groups, should be removed as well as
possible.

The Table shows clearly that now all the potential constants converge
rather nicely with N, also the total energies are now all negative and de-
creasing with increasing N. Kσ seems to be somewhat large, but keep in
mind that Kσ includes still two sets of symmetrically different intraring
σ-bonds. One set includes the four bonds which bind to the bridge carbon
atoms in the ring, while the other set contains the two bonds that do not
connect to the bridges. However, having only two minimum structures, A
and B, only two potential constants can be determined. Strangely, the
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TABLE VI
The potential constants Kσ, K′σ, and VΦ, together with the total energies of the correspond-
ing chains in A and B phases and the aromatization energies EA–B (see text for details), for
increasing number of rings N, calculated with potential model C and with two terminal CH2
groups at each B-phase chain

N Kσ, eV/Å2 K′σ, eV/Å2 VΦ, eV EA, eV EB, eV EA–B
meV/ring

2 94.75 90.42 0.865 –171.59 –196.74 –2187.93

3 101.65 87.51 0.951 –256.51 –281.22 –1520.51

5 105.59 77.57 0.993 –426.65 –451.10 –970.12

10 105.50 62.23 1.016 –853.02 –877.50 –498.70

20 103.45 51.60 1.025 –1707.05 –1731.93 –237.87

40 101.83 45.82 1.030 –3415.87 –3441.48 –103.25

60 101.12 43.68 1.031 –5125.00 –5151.33 –57.43

80 100.73 42.56 1.032 –6834.23 –6861.28 –34.30

100 100.48 41.87 1.032 –8543.50 –8574.28 –20.34

120 100.31 41.41 1.033 –10252.80 –10281.30 –11.01

140 100.18 41.07 1.033 –11962.11 –11991.33 –4.33

150 100.13 40.94 1.033 –12816.76 –12846.34 –1.65

160 100.09 40.82 1.033 –13671.42 –13701.36 +0.69

180 100.01 40.62 1.033 –15380.75 –15411.41 +4.60

200 99.95 40.46 1.033 –17090.07 –17121.45 +7.73



aromatization energy still turns into a positive, increasing number from N =
160. But note that this does not mean that also in ionic systems the
quinoid structure is favored over the aromatic one. We will see below in the
optimizations that this is actually not the case.

For the sake of completeness, Table VII shows the corresponding set of
values for the case of a B phase without having terminal CH2 groups, not
even in the determination process of the potential constants.

Note, however, that the set is somewhat unrealistic, because now every
B-phase chain is conjugated throughout, with an unsaturated carbon (three
single bonds only) at each end of the chain. Also here, minima in A and B
for q and Φ have been checked in all cases by explicit calculation of the re-
spective systems shifted by ±0.0001 Å and ±0.01°, respectively, from their
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TABLE VII
The potential constants Kσ, K′σ, and VΦ, together with the total energies of the correspond-
ing chains in A and B phases and the aromatization energies EA–B (here just EA – EB), for in-
creasing number of rings N, calculated with potential model C, without two terminal CH2
groups at each B-phase chain

N Kσ, eV/Å2 K′σ, eV/Å2 VΦ, eV EA, eV EB, eV EA–B
meV/ring

2 85.44 –83.12 0.865 –172.19 –172.24 +27.39

3 83.83 –21.28 0.951 –258.27 –258.36 +28.52

5 87.06 +6.98 0.993 –429.68 –429.84 +31.72

10 91.84 +24.09 1.016 –857.44 –857.78 +33.93

20 95.19 +31.75 1.025 –1712.36 –1713.06 +34.99

40 97.17 +35.41 1.030 –3421.84 –3423.26 +35.52

60 97.88 +36.61 1.031 –5131.23 –5133.37 +35.70

80 98.24 +37.21 1.032 –6840.60 –6843.46 +35.79

100 98.46 +37.56 1.032 –8549.95 –8553.54 +35.84

120 98.61 +37.80 1.033 –10259.31 –10263.61 +35.88

140 98.72 +37.97 1.033 –11968.65 –11973.68 +35.90

160 98.80 +38.10 1.033 –13678.00 –13683.75 +35.92

180 98.86 +38.19 1.033 –15387.35 –15393.82 +35.94

200 98.92 +38.27 1.033 –17096.69 –17103.88 +35.95



equilibrium geometries. Obviously, also here all the values converge with
increasing N and all total energies are negative and minima. The aromat-
ization energy in this case is positive for all N, and thus the quinoid form is
for all neutral chains more stable than the aromatic one. However, this
form should not be used because for the lower members, N = 2 and 3, one
of the force constants is even negative, what is non-physical for a force
constant.

Therefore in all the following calculations in Section III we use potential
model C including terminal CH2 groups in the B form. Now we want to
turn briefly to a very artificial way to fix the minima such that the aromatic
one is the more stable one also in the neutral chains.

II.3.4. An Artificial Potential to Fix the Aromatization Energy

For that purpose, assume an asymmetric potential function V(x) of some ar-
bitrary coordinate x in arbitrary units:

V x x Bx Cx( ) = + +1
4

1
3

1
2

4 3 2 (60)

where B and C are some, so far arbitrary, constants. Then the first two de-
rivatives are

′ = + +V x x Bx Cx( ) 3 2

′′ = + +V x x Bx C( ) .3 22 (61)

Thus the condition for extrema xi is V′(xi) = 0 which is fulfilled for x1 = 0.
Since V″(0) = C, the requirement C < 0 makes x1 to a maximum. Dividing
V′(x) by (x – x1) = x yields the equation for the other two extrema:
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Note that generally V(x2) < V(x3) where x2 is the negative, x3 the positive
extremum. In the case of a symmetric potential function (B = 0) the two
would be equal.

The question arises now how x has to be modified to yield q and a lower
minimum at q = +1 (aromatic). A comparison of the geometry Ansätze in q
and x
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yields directly the answer:
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. (66)

Note that the addition of such a potential function, V(q), to the total po-
tential of the system changes nothing in the predetermined positions of the
minima, but could force the A phase to become the more stable one. How-
ever, without an ab initio determination of the energy difference between A
and B phases, the use of such a potential with two parameters, B and C,
which can be freely chosen, would introduce a far too large degree of arbi-
trariness into the model. Further, at the moment we are not in a position to
perform polymer calculations on the optimized aromatic and quinoid struc-
tures of the polymer. However, the potential which would have to be added
to the total energy would be

Collect. Czech. Chem. Commun. (Vol. 70) (2005)

Bipolaron Dynamics in Polyparaphenylene 721



V x Bx CxJ J J
J

N

= + +



=

∑ 1
4

1
3

1
2

4 3 2

1

x x q x xJ J= − − −2 2 3

1
2

1( )( )

x
B C

B
x

B C
B

2 2 3 22
1 1

4
2

1 1
4= − + −









 = − − −









; . (67)

This potential would leave the positions of the minima unchanged, but the
maximum positions (not determined so far) would for sure not be at q = 0,
which was anyway not expected. An example for V(x) is the case B = 0.5
and C = –1. In this example x2 = –1.28 and x3 = 0.78, leading to the maxi-
mum position at q = –0.24. In a previous paper38 we reported that the en-
ergy difference between A and B phases in cis-polyacetylene converges
to about –7 meV/CH, when extrapolated to MP4 results. Kievelson, Su,
Schrieffer, and Heeger4 stated that the corresponding energy difference
should be approximately of the same order of magnitude in ring com-
pounds. Thus we should expect about –30 to –50 meV/ring in poly(p-phe-
nylene). This could be introduced simply by adding the above discussed
potential to the total energy, using the parameters B = 0.12 eV/Å3 and C =
–1 eV/Å2, and 1/4 eV/Å4 at the quartic term leading to an appropriate po-
tential (in eV). Note that in Eq. (67) in this case xJ, x2 and x3 are in Å (im-
portant in the equations defining x2 and x3), while instead of (1 – qJ) one
has to write (1 – qJ/Å). With those parameters, the minima are x2 = –1.062 Å
and x3 = 0.941 Å, with the maximum at q = –0.599 Å. The minima are at
–0.294 and –0.213 eV corresponding to an energy difference of –80.4 meV
between A and B phases. Figure 5 shows this type of potential.

Equation (67) has to be rewritten to
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III. BIPOLARON STRUCTURE OPTIMIZATIONS

To this end, we calculated chains of different lengths with a bipolaron
structure on them. For the potential, model C and the constants optimized
using saturating terminal CH2 groups in the B-phase chains were used. The
bipolaron geometry is

q
L I L I NI

Å
= + − + + − −1 1tanh [ ( )] tanh [ ( )] .κ κ (69)

The change from A to B phase in this geometry occurs at site L and the
change from B back to A phase at N – L + 1. The width of that change is
termed κ. The angle Φ is interpolated in a linear fashion between ΦA

o for
A phase and 0 for B phase. Further it is assumed that the mean value of the
aromatization coordinates of rings I – 1 and I determine the angle by which
ring I is rotated against ring I – 1:

φ φ φI I
I Iq q

= + +
+







−

−
1

11
2

1
2 Å

o
A . (70)

Table VIII shows the results of calculations on chains with 100 and 200
rings having different values of the width of the A–B change.
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FIG. 5
An artificial potential function V(q) (in eV), where q (in Å) is the collective aromatization coor-
dinate with B = 0.12 eV/Å3 and C = –1 eV/Å2 to fix minima and aromatization energy (see
II.3.4. for details)
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The Table gives the position and energy of the largest maximum near to
the chain end, as well as that of the lower one in the center of the chain.
Near to the center of the chain appears a minimum at L = 48 and 98, re-
spectively. For both chain lengths the energy minimum occurs there when
κ–1 is around 2.0. In some cases of low κ–1 values there are some oscillations
of the energy when L comes close to the chain end. The Table shows clearly
that the very small bipolaron width is converged both for the chain with
100, as well as for that with the 200 rings.

In Fig. 6 we show a plot of the energy difference between the chains hav-
ing their A–B changes at L and that one which has the total maximum en-
ergy as function of L for a chain of 100 rings and κ–1 = 2.0.

Figure 6 shows the complete curve, for all L from L = 1 to L = 50. Obvi-
ously there is a shallow minimum close to the center of the chain, for
which L is the minimum position of the A–B change for a very small
bipolaron, actually far smaller than expected. The energy increases rather
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TABLE VIII
Energies per ring of the first and second maximum and of the bipolaron minimum in a
chain with two positive charges and a bipolaron structure in it, where the geometry goes
from aromatic over to quinoid in site L, and from quinoid back to aromatic in site N – L + 1.
Site L is changed in each calculation from L = 1 to L = N/2, where N is the chain length.
Note that in most cases some oscillations occur when L is approaching the chain end

N κ–1 Lmax,1
Emax,1,
eV/ring

Lmin,1
Emin,1,
eV/ring

Lmax,2
Emax,2,
eV/ring

100 0.5 8 –85.360001 48 –85.407326 50 –85.405527

100 1.0 9 –85.361506 48 –85.407382 50 –85.405483

100 1.5 10 –85.363047 48 –85.407422 50 –85.405362

100 2.0 10 –85.364480 48 –85.407439 50 –85.405220

100 4.0 14 –85.369898 48 –85.407271 50 –85.404793

100 6.0 16 –85.374790 48 –85.406870 50 –85.404554

200 0.1 7 –85.380862 98 –85.436490 100 –85.435560

200 1.1 9 –85.382596 98 –85.436528 100 –85.435572

200 2.1 11 –85.384395 98 –85.436551 100 –85.435437

200 4.0 15 –85.387454 98 –85.436466 100 –85.435237

200 6.0 18 –85.390532 97 –85.436292 100 –85.435118

200 8.0 22 –85.393269 97 –85.436187 100 –85.435045



steeply when L moves towards the chain end, goes through a maximum
around L = 10 and then falls again steeply. A deep minimum is reached at
L = 2, while at L = 1 the energy rises again a little bit.

To illustrate the reason for that unexpectedly small bipolaron width, we
give in Table IX for the minimum position L = 48 in a 100-ring chain, the
displacement coordinates qK for each ring and the positive charge on each
ring between ring numbers 40 and 61.

If we count the bipolaron width until q reaches 0.76 Å, then the width of
the structure is obviously about 10 rings. However, it is so compressed that
the fully quinoid structure is not even developed, but the lowest value of q
is just –0.67 Å. The remarkable effect is that obviously no charge separation
at all takes place, but only a uniform delocalization, while we would have
expected that one charge would be localized at one of the bipolaron bor-
ders and the other one at the other border. In this way the driving force for
a larger bipolaron width is completely missing from the system: the repul-
sion between the two localized like charges. The only driving force remain-
ing is the one originating from the unfavorable B-phase segment. This force,
however, tends to reduce the width of the bipolaron, as it is observed.
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FIG. 6
Plot of the energy difference between a doubly charged (two positive charges) chain of 100
rings with a bipolaron structure in it, starting at a site L and that one with the maximum en-
ergy per ring. The reciprocal width of the aromatic-to-quinoid change is κ–1 = 2.0, and the site
L, where the change is centered, is moving from the chain end to its center (complete curve)
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Table X gives the displacement coordinates qK and the charges, QK, on
each ring K for chains with L values of 1, 2, 5, 10, and 15.

From the maximum L = 10 moving with the bipolaron towards the center
of the chain and towards decreasing width of the bipolaron, the energy de-
creases, probably because the size of the B-phase segment decreases in the
same direction. Thus in contrast to many neutral chain cases, in the
charged ones clearly the aromatic A phase is favored over the quinoid B
phase. At the maximum, L = 10, the change in geometry starts to affect the
chain end, unit no. 1, in this way forming an increasingly quinoid, and
thus increasingly unsaturated, end ring. However, coincidentally, the posi-
tive charge at the end ring also increases, increasing the saturation. This is
the reason why the energy decreases again when going with L from the
maximum, L = 10, closer to the chain end. However, when L is equal to the
chain end, the charge becomes somewhat compressed and therefore the en-
ergy rises again a little when L reaches 1, creating a minimum at L = 2.
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TABLE IX
The displacement coordinates qK for each ring K and the charges QK (in units of the elemen-
tary charge e = 1.602 × 10–19 As) on each ring K in a chain of 100 rings with a minimum en-
ergy doubly positive bipolaron structure (L = 48) in its center for κ–1 = 2.0 between rings #40
and #61

K qK, Å QK, e K qK, Å QK, e

40 1.00 0.00 51 –0.67 0.41

41 1.00 0.00 52 –0.43 0.31

42 1.00 0.00 53 0.00 0.18

43 0.99 0.00 54 0.47 0.07

44 0.96 0.00 55 0.76 0.02

45 0.91 0.01 56 0.91 0.01

46 0.76 0.02 57 0.96 0.00

47 0.47 0.07 58 0.99 0.00

48 0.00 0.18 59 1.00 0.00

49 –0.43 0.31 60 1.00 0.00

50 –0.67 0.41 61 1.00 0.00
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TABLE X
The displacement coordinates qK for each ring K and the charges QK (in units of the elemen-
tary charge e = 1.602 × 10–19 C) on each ring K in chains of 100 rings with a doubly positive
bipolaron structure in their centers for κ–1 = 2.0 with the aromatic-to-quinoid change in
sites L = 1, 2, 5, 10, and 15, shown between rings No. 1 and 10 for the first three and 6 and
20 for the last two

L = 1
E1 = –85.4621 eV/ring

L = 2
E2 = –85.4634 eV/ring

L = 5
E5 = –85.4242 eV/ring

K qK, Å QK, e qK, Å QK, e qK, Å QK, e

1 0.00 0.0001 0.46 0.0000 0.96 0.0000
2 –0.46 0.0002 0.00 0.0002 0.91 0.0000
3 –0.76 0.0005 –0.46 0.0003 0.76 0.0000
4 –0.91 0.0007 –0.76 0.0006 0.46 0.0001
5 –0.96 0.0011 –0.91 0.0009 0.00 0.0002
6 –0.99 0.0015 –0.96 0.0013 –0.46 0.0004
7 –1.00 0.0020 –0.99 0.0018 –0.76 0.0006
8 –1.00 0.0026 –1.00 0.0023 –0.91 0.0010
9 –1.00 0.0032 –1.00 0.0029 –0.96 0.0015

10 –1.00 0.0039 –1.00 0.0036 –0.99 0.0021

L = 10
E10 = –85.3645 eV/ring

L = 15
E15 = –85.3688 eV/ring

K qK, Å QK, e qK, Å QK, e

6 0.96 0.0000 1.00 0.0000
7 0.91 0.0000 1.00 0.0000
8 0.76 0.0000 1.00 0.0000
9 0.46 0.0001 1.00 0.0000

10 0.00 0.0002 0.99 0.0000
11 –0.46 0.0004 0.96 0.0000
12 –0.76 0.0008 0.91 0.0000
13 –0.91 0.0013 0.76 0.0000
14 –0.96 0.0020 0.46 0.0001
15 –0.99 0.0027 0.00 0.0003
16 –1.00 0.0036 –0.46 0.0006
17 –1.00 0.0046 –0.76 0.0012
18 –1.00 0.0057 –0.91 0.0019
19 –1.00 0.0069 –0.96 0.0029
20 –1.00 0.0082 –0.99 0.0040



IV. CONCLUSION

Obviously, the use of the Hückel-type picture has two shortcomings for the
description of bipolarons. The first one is that, unexpectedly for larger
chains, the aromatic phase becomes less favorable than the quinoid one for
neutral chains, which is not the case for charged ones. In accordance with
Paldus’ notion of the importance of explicit electron electron interactions,
we hope that this shortcoming might be cured, when in the future we use a
Pariser–Parr–Pople hamiltonian. However, even if this would not be case,
the existence of a fully conjugated system of double bonds in a quinoid
chain might account for this unexpected behavior.

More crucial is the fact that the expected separation of the two charges
does not occur, creating an extremely small bipolaron. In a PPP description,
maybe even a correlated or DFT type model might be needed. Then the
frontier orbital, from which the two electrons are removed in order to cre-
ate the two positive charges, might be more sensitive to the disorder
around the sites where the A–B changes occur, showing maxima of its den-
sity there, and thus separating charges on those rings. Actually this had
been already discussed in the literature41 on the basis of a Hubbard-type
hamiltonian

However, for this a spin separation could be necessary either. So one
maybe would have to use an unrestricted PPP (UPPP) type of model, which
can have a single maximum in the orbital of one of the two spins at one
phase change, and another single maximum in the orbital of the other spin
at the other phase change. If it turns out that spin separation is necessary
either, simple UPPP cannot be used because of the appearance of spin con-
taminations there, making UPPP geometry predictions extremely unreliable
(Paldus et al.42). Then one has to use an annihilated UPPP method43, as we
used in calculations on open-shell polyacetylene chains. The seemingly
better extended PPP method could not be used because, as shown by
Martino and Ladik44, the extended method converges back to the unre-
stricted one with increasing system size. The RPPP (restricted closed-shell
PPP), the UPPP and the AUPPP methods are currently under programming
(the debugging process is not yet completed) and the results will be the sub-
ject of a forthcoming publication.
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